Math Tutoring Service

See my Mathematics Tutoring Service on Thumbtack

Teaching Partial Fractions

Students commonly encounter the method of partial fractions for the first time (without proofs) in Calculus II, as a method to aid in integrating rational functions. These days, partial fractions are sometimes not taught at all, since students can determine most any common indefinite integral by using a CAS. Without taking sides in the debate over how much methods of integration should be taught, I would like to make a case that partial fractions should be taught in high school or below.

Of course, partial fractions are a technique that comes up when discussing the algebra of rational functions. However, they also come up very naturally in arithmetic. I propose introducing them in the context of solving a problem that students might find interesting. I call this the problem of the base-p rulers.

The smallest distance measurable by an ordinary English-units ruler is 1/2^n inch, where n is typically 5 (32nds) or 6 (64ths). Define a base-2 ruler to be an idealized version of this ruler, where all coordinates of the form a/2^n are marked, where a and n are non-negative integers. It's clear that not all rational distances are measurable with such a ruler, for example 1/3 is not. To measure all rational distances, we can create an infinite number of base-p rulers, where p varies over the prime numbers. A base-p ruler has all co-ordinates of the form a/p^n, where a and n are non-negative integers. A length of length a/b can be laid with base-p rulers, provided a/b can be expressed as a sum of signed base-p numbers a/p^n. For example, the length 1/6 can be laid out by measuring 1/2, and then backing up 1/3: 1/6 = 1/2 - 1/3.

We want to have students discover that every rational number length a/b (in lowest terms) can be expressed using base-p rulers, where p varies over the primes that divide b.

Providing a proof requires some number theory. Clearly, it is necessary and sufficient to show that every number of the form 1/b can be represented in the required form, and the number theory involves finding a generalization of the fact that if (a, b) = 1 there is a solution in integers to ax + by = 1.