Math Tutoring Service

See my Mathematics Tutoring Service on Thumbtack

A16. Treasure search

A treasure hunter is on an island which is in the shape of the unit disc, and they are located on the boundary at (1,0). The treasure hunter has a treasure-detector, which will light up if the detector is within 1/2 unit of any buried treasure. The treasure hunter can move along any path (say, continuous and piecewise infinitely differentiable) that starts at (1,0) and stays within the closed unit disk. The treasure hunter claims that they can discover whether or not there is treasure buried on the island (or in other words, that the union of all disks of radius 1/2 centered on points along the path covers the unit disk) by traveling along a path of length π. Prove or disprove the claim.

This is my revision of a problem sent to me by Apratim Roy.

A15. A Problem by Henry Dudeney

The houses on a long street have addresses 1, 2, 3, ... n. (Dudeney was British. Unlike the custom in most of the US, odd and even house numbers in Britain occur on the same side of the street. Assume all houses are on the same side of the street.) Call a house a half-way house if the sum of the numbers of the houses before it are equal to the sum of the numbers of the houses after it. Depending on n, there may or may not be a half-way house. For example, if n = 8, then there is a half-way house, namely 6, because 1 + 2 +3 + 4 + 5 = 7 + 8. You can check there is no half-way house if 1 < n < 8.

Find the value of n if you know that 50 < n < 500 and there is a half-way house.

You could do this easily by a brute-force search with a computer, so to make it interesting, no computer/calculator use is allowed.

I saw this problem presented online by the Mathologer. It connects with many fascinating parts of number theory, and there is an interesting connection with Ramanujan.